计算机视觉:目标检测、人脸识别

📁学习日志📆2023-05-07 🤯PH 👀410 次浏览

1、目标检测

图像分类:分类、概率

目标检测:给出位置、分类、概率

数据标注:坐上坐标,右下坐标 矩形框 (x1,y1,x2,y2,class)

目标检测常用数据集:PASCAL VOC、MS COCO(30W+图片,80个分类)

计算机视觉:目标检测、人脸识别-BtoAI

目标检测的操作:

  • IoU 表示两个矩形的重叠程度
  • NMS 去掉多个重复的预测框,设置一个IoU阈值,然后对分数进行排序,计算IoU选一个最好的

评价指标:

计算机视觉:目标检测、人脸识别-BtoAI

2、检测方法

计算机视觉:目标检测、人脸识别-BtoAI

二阶段目标检测—Faster RCNN,速度慢

一阶段目标检测—YOLO V8,快

目标检测新范式—DETR,训练时间长

3、实战

计算机视觉:目标检测、人脸识别-BtoAI
计算机视觉:目标检测、人脸识别-BtoAI
# 模型推理
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.outputs import OutputKeys

realtime_detector = pipeline(Tasks.image_object_detection, model=os.path.join(work_dir,'output'))
result = realtime_detector('./p001.png')
# 打印结果
print(result)

模型:

https://www.modelscope.cn/models/damo/cv_cspnet_image-object-detection_yolox/summary

4、人脸检测

计算机视觉:目标检测、人脸识别-BtoAI
face_detection = pipeline(task=Tasks.face_detection, model='damo/cv_ddsar_face-detection_iclr23-damofd-2.5G')
# 支持 url image and abs dir image path
img_path = './p02.png'
result = face_detection(img_path)

# 提供可视化结果
from modelscope.utils.cv.image_utils import draw_face_detection_result
from modelscope.preprocessors.image import LoadImage
img = LoadImage.convert_to_ndarray(img_path)
cv2.imwrite('srcImg.jpg', img)
img_draw = draw_face_detection_result('srcImg.jpg', result)
import matplotlib.pyplot as plt
plt.imshow(img_draw)

模型:

https://www.modelscope.cn/models/damo/cv_ddsar_face-detection_iclr23-damofd-2.5G/summary

更多文章

回到顶部